

FSAE Power Plant Assembly

Team 26: Nimai Delgado, Kori Lutenbacher, Corey McCon, Michael Quarls, Suman Thakuri

Sponsor: TigerRacing
Faculty Advisor: Dr. Schoegl
Alumni Advisor: Collin Kappe

Introduction

Customers

- Primary: TigerRacing, FSAE
- •Secondary: Mechanical Engineering Department, other competing teams

Project Objectives

- •Select an engine and design an intake and exhaust system to optimize the power output and improve overall volumetric efficiency
- Test and analyze intake and exhaust prototypes
- Comply with FSAE standards
- •Stay within budget of \$7500
- Use these designs for 2014 FSAE car

Engineering Specification Functional Decomposition Reduce Increase Optimize Volumetric Noise Power Efficiency Level Evenly Decrease Transmit distribute head air air flow losses Increase Instant Efficient Throttle scavenging velocity Response

Engine Selection

Honda CBR-600RR		
No. of Cylinders	4	
Stroke	4	
Compression ratio	12.2:1	
Engine Displacement	599cc	
Peak HP	111.05hp @	
	13,500 rpm	
Dools Torquo	46.48 lbs ft.	
Peak Torque	@ 10,750 rpm	
Max RPM	15,000	
Valve Overlapping Period	26°	

Assembly

Fig. 1 Power Plant Assembly

Fig. 3 Exhaust Assembly

Testing Plans

Fig. 4 Intake CFD Simulation

Fig. 5 Engine Dyno Setup¹

Fig. 6 Flow bench Setup²

Budget Breakdown

2014 Power Plant Budget			
System	Component	Source	Cost
Intake	Air Filter	K&N	\$30.00
	Restrictor	In House	\$50.00
	Plenum/Runners	Realize, Inc	\$700.00
	Injectors	Vendor	\$300.00
	Throttle Body	Vendor	\$150.00
Engine	Honda CBR 600RR	Vendor	\$1,400.00
	PC V	PC	\$370.00
	Ignition Module	PC	\$355.00
	Pressure Sensor	PC	\$220.00
Exhaust	Piping	Vendor	\$600.00
	Muffler	Vendor	\$300.00
	Approximate	Subtotal	\$4,475.00
	20% Contingency		\$895.00
	Approximate	Total	\$5,370.00

Safety Considerations

FSAE Rules

- Entire system must remain within the safety envelope
- •Engine
 - Displaced volume < 600cc
 - 4 stroke engine
- •20mm restrictor
- Single throttle body
- Exhaust exit must be pointed away from driver
- Exhaust noise level below 110dB

Factor of Safety for bolts and fasteners on mounts

Milestones

- Finalize designs
- Finish CFD and FEA
- Design and fabricate Jig
- Manufacture intake and exhaust
- Perform flow bench and engine dyno testing
- Present final prototype